Sains Malaysiana 54(8)(2025): 1957-1971
http://doi.org/10.17576/jsm-2025-5408-07
Biosensor DNA
Elektrokimia Berasaskan Nanokomposit Silika-Emas untuk Penentuan Ultrasensitif E.
coli Patogen dalam Sayuran dan Air Persekitaran
Electrochemical DNA Biosensor Based
on Silica-Gold Nanocomposite for Ultrasensitive Quantitation of Pathogenic E.
coli in Vegetable and Environmental Water
LING LING TAN1,
DEDI FUTRA2,3,* & LEE YOOK HENG2
1Pusat Kajian Bencana Asia Tenggara (SEADPRI), Institut Alam Sekitar dan
Pembangunan
(LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM
Bangi, Selangor, Malaysia
3Department of Chemistry Education, Faculty of Education, Universitas
Riau, Kampus Binawidya KM 12.5 Pekanbaru,
28131, Riau, Indonesia
Received: 27 December 2024/Accepted: 23 June
2025
Abstrak
Escherichia coli lazimnya digunakan sebagai organisma penunjuk untuk menilai kualiti air
dan pencemaran patogen enterik di perairan. Mengesan bakteria najis, seperti E.
coli O157:H7 yang mempunyai ciri virulensi yang
akan menyebabkan kesan patogen pada manusia adalah lebih membimbangkan orang
biasa. Di sini, biosensor DNA elektrokimia ultrasensitif berasaskan nanokomposit silika-emas (Si-Au) telah disediakan
untuk penentuan khusus jujukan DNA E. coli dalam
sampel sayuran segar dan air daripada pelbagai sumber, contohnya sungai,
laut, paip dan air mineral. Elektrod pes karbon
bercetak skrin (SPCE) telah diubahsuai dengan lapisan nanozarah emas
(AuNPs) untuk menggalakkan pemindahan elektron secara langsung antara label
oligonukleotida antrakuinona elektroaktif dan elektrod SPCE. Nanosfera silika terubah
suai dengan kumpulan berfungsi amina (SiNPs) telah disintesis melalui teknik
sonikasi satu langkah yang mudah dan dijerap secara fizikal pada SPCE terubah
suai AuNPs untuk membentuk elektrod nanokomposit Si-Au (Si-Au-SPCE). Biosensor
DNA elektrokimia terbangun mampu mengesan kuantiti DNA sasaran E. coli pada paras rendah dalam julat kepekatan 1.0×10-16-1.0×10-9 M cDNA dengan had pengesanan (LOD) pada 0.13 aM. LOD yang dilaporkan dalam
kajian ini adalah sekurang-kurangnya 10 kali ganda lebih rendah daripada
kebanyakan biosensor DNA elektrokimia yang dilaporkan dalam kajian lepas
setakat ini. Kuantifikasi DNA E. coli hanya memerlukan kira-kira 30
minit dan biosensor DNA menunjukkan kestabilan operasi selama 2 bulan.
Nanokomposit Si-Au boleh berfungsi sebagai bahan termaju yang berpotensi untuk
biosensor DNA berprestasi tinggi seperti yang dibuktikan melalui kajian
kuantitatif kepekatan DNA E. coli dalam sampel sayuran mentah dan air
persekitaran dengan hampir 100% perolehan semula kepekatan cDNA E. coli yang ditambahkan dalam sampel.
Kata kunci: Air
persekitaran; biosensor DNA elektrokimia; Escherichia coli; nanosfera
silika; nanozarah emas
Abstract
Escherichia coli is commonly used as an indicator organism for
assessing water quality and enteric pathogenic contamination in waters.
Detecting fecal bacteria, such as E. coli O157:H7 that had
acquired virulence characteristics, which would cause pathogenicity in humans is of more concern to
the average people. Herein, an
ultrasensitive electrochemical DNA biosensor based on silica-gold (Si-Au)
nanocomposite was prepared for sequence-specific detection of E. coli DNA in fresh vegetable and water samples from various sources (river, marine,
tap, and mineral waters). The screen-printed carbon paste electrode (SPCE) was
modified with a layer of gold nanoparticles (AuNPs) to promote direct electron transfer between
the electroactive anthraquinone oligonucleotide label and the SPCE electrode. Animated-silica
nanospheres (SiNPs) were synthesized via a facile
single-step sonication technique, and physically absorbed onto the
AuNPs-modified SPCE to form Si-Au nanocomposite electrode (Si-Au-SPCE). The
electrochemical DNA biosensor was capable of low levels of E. coli target DNA quantitation in the concentration range of
1.0×10-16-1.0×10-9 M cDNA, with a limit of detection
(LOD) at 0.13 aM. The LOD reported in this work is at
least 10 times better than many reported electrochemical DNA biosensors in the
literature so far. The quantification of E.
coli DNA requires only about 30 min and the DNA biosensor showed
operational stability for 2 months. The Si-Au nanocomposite could serve as a
promising material for high-performance DNA biosensor as proven through the
quantitation of E. coli DNA
concentration in raw vegetable and water samples with close to 100% recoveries
of the spiked E. coli cDNA
concentration.
Keywords: Electrochemical DNA biosensor; environmental
waters; Escherichia coli; gold
nanoparticles; silica nanospheres
REFERENCES
Bae, S.W., Oh, J.,
Shin, I., Cho, M.S., Kim, Y., Kim, H. & Hong, J. 2010. Highly sensitive
detection of DNA by electrogenerated chemiluminescence amplification using
dendritic Ru(bpy)32+-doped
silica nanoparticles. Analyst 135: 603-607. doi:
https://doi.org/10.1039/B920998K
Bonten, M., Johnson,
J.R., Biggelaar, A.H.J., Georgalis,
L., Geurtsen, J., Palacios, P.I., Gravenstein, S., Verstraeten, T., Hermans, P. & Poolman, J.T. 2021.
Epidemiology of Escherichia coli bacteremia: A systematic literature
review. Clinical Infectious Diseases 72(7): 1211-1219. doi: 10.1093/cid/ciaa210
Braz, V.S., Melchior,
K. & Moreira, C.G. 2020. Escherichia coli as a multifaceted
pathogenic and versatile bacterium. Frontiers in Cellular and Infection Microbiology 10: 548492.
https://doi.org/10.3389/fcimb.2020.548492
Dester,
E., Kao, K. & Alocijia, E.C. 2022. Detection of
unamplified E. coli O157 DNA extracted from large food samples using a
gold nanoparticle colorimetric biosensor. Biosensors 12(5): 274.
https://doi.org/10.3390/bios12050274
Du, Y., Guo, S., Dong, S. & Wang, E. 2011. An integrated sensing
system for detection of DNA using new parallel-motif DNA triplex system and
grapheme mesoporous silica gold nanoparticle hybrids. Biomaterials 32: 8584-8592.
https://doi.org/10.1016/j.biomaterials.2011.07.091
Eka, S., Lee, Y.H.,
Musa, A., Tan, L.L., Nazaruddin, N., Khairi, S., Chew,
P.C. & Muhammad, I. 2022. Electrochemical DNA biosensor based on
mercaptopropionic acid-capped ZnS quantum dots for determination of the gender
of arowana fish. Biosensors 12(8): 650.
https://doi.org/10.3390/bios12080650
El-Moghazy, A.Y., Wisuthiphaet, N.,
Yang, X., Sun, G. & Nitin, N. 2022. Electrochemical biosensor based on
genetically engineered bacteriophage T7 for rapid detection of Escherichia
coli on fresh produce. Food Control 135: 108811.
https://doi.org/10.1016/j.foodcont.2022.108811
Gambushe, S.M., Zishiri, O.T. & Zowalaty, M.E.E.
2022. Review of Escherichia coli O157:H7 prevalence, pathogenicity,
heavy metal and antimicrobial resistance, African perspective.
Infection and Drug Resistance 15: 4645-4673. doi:
10.2147/IDR.S365269
Garrido, A., Chapela, M., Román, B., Fajardo, P., Vieites, J.M. & Cabado, A.G. 2013. In-house validation of a multiplex
real-time PCR method for simultaneous detection of Salmonella spp., Escherichia
coli O157 and Listeria monocytogenes.
International Journal of Food Microbiology 164(1): 92-98.
https://doi.org/10.1016/j.ijfoodmicro.2013.03.024
Geng,
P., Zhang, X., Teng, Y., Fu, Y., Xu, L., Xu, M., Jin, L. & Zhang, W. 2011. A DNA
sequence-specific electrochemical biosensor based on alginic acid-coated cobalt
magnetic beads for the detection of E. coli. Biosensors
and Bioelectronics26: 3325-3330. doi:
10.1016/j.bios.2011.01.007
Guo, Z., Yang, F., Zhang, L. & Zheng, X. 2013. Electrogenerated
chemiluminescence energy transfer for the label-free detection of DNA. Sensors & Actuators B: Chemical 177: 316-321.
https://doi.org/10.1016/j.snb.2012.10.141
Jiang, W.L., Shan, W.Q.,
Sheng, W.C., Ying, H.Z., Jian, J. & Ping, W. 2008. The Escherichia coli O157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chinese Science Bulletin 53: 1175-1184.
doi:10.1007/s11434-007-0529-x
Li, K., Lai, Y., Zhang, W. & Jin, L. 2011. Fe2O3@Au
core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia
coli detection. Talanta 84: 607-613. doi:
10.1016/j.talanta.2010.12.042
Li, M., Yang, H., Ma, C., Zhang, Y., Ge, S., Yu, J. & Yan, M. 2014. A sensitive
signal-off aptasensor for adenosine triphosphatebased on the quenching of Ru(bpy)32+-doped silica nanoparticles
electrochemiluminescence by ferrocene. Sensors & Actuators B: Chemical 191:
377-383. https://doi.org/10.1016/j.snb.2013.10.020
Li, Y., Deng, L.,
Deng, C., Nie, Z., Yang, M. & Si, S. 2012. Simple and sensitive aptasensor based on quantum dot-coated silica nanospheres
and the gold screen-printed electrode. Talanta 99: 637-642. https://doi.org/10.1016/j.talanta.2012.06.054
Lin,
X., Mei, Y., He, C., Luo, Y., Yang, M., Kuang, Y., Ma, X., Zhang, H. &
Huang, Q. 2021. Electrochemical biosensing interface based on carbon dots-Fe3O4 nanomaterial for the determination of Escherichia coli O157:H7. Frontiers
in Chemistry 9: 2021. https://doi.org/10.3389/fchem.2021.769648
Lu, Z. & Breidt, F. 2015. Escherichia coli O157:H7
bacteriophage 241 isolated from an industrial cucumber fermentation at high
acidity and salinity. Frontiers in Biology 6: 67. doi: 10.3389/fmicb.2015.00067
Mahirah, T., Tan, L.L.,
Nurul Huda, A.K., Goh, C.T., Lee, Y.H. & Bahariah,
K. 2020. Reflectance aptasensor based on metal salphen label for rapid and facile determination of
insulin. Talanta 207: 120321.
https://doi.org/10.1016/j.talanta.2019.120321
Mao,
X., Yang, L., Su, X. & Li, Y. 2006. A nanoparticle
amplification based quartz crystal microbalance DNA sensor for detection of Escherichia
coli O157:H7. Biosensors and Bioelectronics 21: 1178-1185.
https://doi.org/10.1016/j.bios.2005.04.021
Nguyen, S.H., Vu, P.L.T.
& Tran, M.T. 2023. Absorbance biosensors-based hybrid MoS2 nanosheets for Escherichia coli detection. Scientific Reports 13:
10235. https://doi.org/10.1038/s41598-023-37395-4
Ormsby, M.J., White,
H.L., Metcalf, R., Oliver, D.M. & Quilliam, R.S. 2023. Clinically important E. coli strains can persist, and retain their pathogenicity, on
environmental plastic and fabric waste. Environmental Pollution 326: 121466.
https://doi.org/10.1016/j.envpol.2023.121466
Osińska, A.,
Korzeniewska, E., Korzeniowska-Kowal, A., Wzorek, A., Harnisz,
M., Jachimowicz, P., Buta-Hubeny, M. & Zieliński, W. 2023. The
challenges in the identification of Escherichia coli from environmental
samples and their genetic characterization. Environmental Science and Pollution
Research 30: 11572-11583. https://doi.org/10.1007/s11356-022-22870-8
Pandey, C.M., Singh,
R., Sumana, G., Pandey, M.K. & Malhotra, B.D. 2011. Electrochemical genosensor based on modified octadecanethiol self-assembled monolayer for Escherichia coli detection. Sensors & Actuators B: Chemical 151:
333-340. https://doi.org/10.1016/j.snb.2010.07.046
Petersen, F. & Hubbart, J.A. 2020. Physical factors
impacting the survival and occurrence of Escherichia coli in secondary
habitats. Water 12(6): 1796. https://doi.org/10.3390/w12061796
Rahimi, E., Momtaz, H.,
Anari, M.M.H., Alimoradi, M., Momeni, M. & Riahi,
M. 2012. Isolation and genomic characterization of Escherichia coli O157:NM and Escherichia coli O157:H7 in minced meat
and some traditional dairy products in Iran. African Journal of
Biotechnology 9: 2328-2332. doi:
10.5897/AJB11.2167
Raja Zaidatul Akhmar, R.J., Tan, L.L.,
Chong, K.F. & Lee, Y.H. 2020. An electrochemical DNA biosensor from
graphene decorated with graphitic nanospheres. Nanotechnology 31: 485501.
https://doi.org/10.1088/1361-6528/abab2e
Razmi, N., Hasanzadeh, M., Willander, M. & Nur, O. 2020. Recent
progress on the electrochemical biosensing of Escherichia coli O157:H7: Material
and methods overview. Biosensors 10(5): 54. doi: 10.3390/bios10050054
Riva, F., Riva, V.,
Eckert, E.M., Colinas, N., Cesare, A.D., Borin, S., Mapelli, F. & Crotti, E.
2020 An environmental Escherichia coli strain is naturally competent to
acquire exogenous DNA. Frontiers in Microbiology 11: 574301. doi:
10.3389/fmicb.2020.574301
Stokes, D.L., Griffin, G.D. & Vo-Dinh, T. 2001. Detection of E.
coli using a microfluidics-based antibody biochip detection system. Fresenius'
Journal of Analytical Chemistry 369: 295-301. doi:
10.1007/s002160000660
Tang, J., Tang, D.P.,
Su, B.L., Li, Q.F., Qiu, B. & Chen, G.N. 2011. Nanosilver-penetrated polyion graphene complex membrane for mediator-free amperometric immunoassay of alpha-fetoprotein using nanosilver-coated silica nanoparticles. Electrochimica Acta 56: 3773-3780. https://doi.org/10.1016/j.electacta.2011.02.059
Zheng, D., Zhang, R., Chen, J., Feng, Z. & Lin, S. 2024. A highly sensitivity
electrochemistry biosensor for E. coli DNA detection based on hollow and
porous dCuO@rGO composite. Inorganic Chemistry
Communications 166: 112621. https://doi.org/10.1016/j.inoche.2024.112621
*Corresponding
author; email: dedifutra@lecturer.unri.ac.id